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Sufficient conditions for the existence of a bounded interpolating projection onto
subspaces of C[0, 1] are found. For spaces of piecewise polynomial functions the
projection can be bounded by the B-spline basis condition number. Infinite inter-
polation problems are also considered.  © 1985 Academic Press, Inc.

1. INTRODUCTION

Let C[0, 1] be the Banach space of continuous functions on the closed
interval [0,1] and let S be a closed subspace. A linear operator
P:C[0,1]— S is called an interpolating projection if there are points {t,}
in [0, 1] such that P has the definition: Pf=s if and only if for all ¢,,
f(¢;) = s(t;). We establish here some sufficient conditions on S for existence
of an interpolating projection onto S and give bounds on the norm of such
a projection in terms of the geometry of S. The main corollary is that for
spline spaces of fixed degree there is always an interpolating projection
whose norm is less than or equal to B-spline basis condition number. This
means that the norm of the projection does not depend on the number of
knots or their distribution. The proof uses the facts that the B-spline
collocation matrix is totally positive and that spline spaces are weak
Chebyshev systems. These same properties were used by Goodman and
Micchelli [7] recently to prove convergence of interpolating spline
functions on a fixed periodic bi-infinite simple knot sequence as the degree
of the splines goes to infinity. It seems that the existence of interpolating
projections with norm depending on only the local degree of splines was
known only for the cases of degree 1 (complexity trivial), degree 2
(Marsden [11]), and degree 3 (de Boor [2]). Most approaches to spline
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interpolation have considered projection operators whose domains con-
sisted of smooth functions or projections onto splines on uniform or quasi-
uniform partitions or projections onto low-degree spline spaces. The recent
results of Jia [8] to the effect that, for high enough degree splines, inter-
polation at knot averages gives rise to projections whose norms grow with
the number of mesh points (for a geometric mesh) make the results of this
paper a bit more interesting than they would otherwise have been. The case
of finite meshes is considered in Section 2 and that of infinite meshes in
Section 3.

In what follows we assume that S has a (Schauder) basis {@;} with the
following properties:

(1) there is a number m such that for all sequences {o,}
s i <[ E ] amme

(2) for every choice of points {t,}, the collocation matrices (¢(;))
are totally non-negative, i.e., all minors are non-negative.

2. FINITE-DIMENSIONAL CASE

We first consider the case where the dimension of § is finite, say,
dim S=N. Since P is an interpolating projection with range S, the
requirement P¢, = ¢, forces it to have the form

N N
#r0=3 (3 a,f11)) 640

i=1 \j=1

where {1,} are the interpolation points and the a;'s satisfy (a,) ' = (¢,(1,)).
By condition (1),

IBf || < max ;ai,- ORI VA m,aX; layl (3)
and |
IBf || > m- max ;aijf(tj) :
If |
max Y a; f(1;)

= lagl,
i
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then by choosing f with || f||=1 and f(;)=sgn a,, we get |P| = |Pf| >
m-max; 3 ; |a;|. Thus, the problem of bounding the norm of P is equivalent,
modulo the quantity m, to bounding the /, operator norm of the inverse of
the matrix whose (7, j)th entry is §,(z,). With the /,, vector norm |x|| :=

max }x,| and the associated matrix norm, we recall a result of de Boor [1].

LEMMA 1. Let A be an nxn matrix whose (n—1)x(n—1) principal
minors are all non-negative. Suppose there is a vector ¢ such that
(Ac)i)(=1Y26>0 for 1 <i<n. Then, A is invertible and ||A | < ||c|| /6.

The key to our analysis is the following result which relies on a theorem
of Jones and Karlovitz [9] which was used in a similar way in [7].

LemMMA 2. Let S be an n-dimensional subspace C[0, 1] having a basis
{$;}r_, satisfying (1) and (2). Then there is s€ S and points 0< t; < - <
t,< 1 such that s(1;)=(—1)'=(—1) |s||, 1<i<n.

Proof. By (2) {¢2,..#,} is a weak Chebyshev system. The Jones—
Karlovitz result then says that there exist numbers «,,..., , such that the
function ¢, —37_, a;¢, has points of equioscillation, 0<¢, < --- <t,< 1.
Multiplying this function by an appropriate number will make it have
norm 1. ||

Remark. This proof replaces an carlier version that (unnecessarily)
invoked the Borsuk antipodal theorem. The author thanks Charles
Micchelli for pointing out this simplification.

THEOREM 1. Let S be an n-dimensional subspace of C[0, 1] satisfying
(1)-(2), then there are points t, < -+ <t, such that the interpolating projec-
tion P: C[0,1] > S determined by these points has norm no greater than
m~ ' ( from condition (1)).

Proof. Let ge S satisty: g(£;)=(—1)'=(—1)"||g| for some ¢, < -+ <1,
as guaranteed by Lemma 2. Let B=(b;)=(¢#,(¢;)) be the corresponding
collocation matrix where {¢;} is the basis for S satisfying (1)-(2). If

g=>Y c,¢;, then

I=g(t)(=1)'=} ¢;4,(t)(—1)'=(—1)" (Be)(t,).

J

Since |c]| <(1/m)|igll=1/m, Lemmal gives |B~'|<m ' By (3),
IPl<m~'. 1

Since the condition number of the L normalized B-spline basis is
Dy o ~2* [3], we have
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COROLLARY. Let S be a finite-dimensional polynomial spline space in
C[O, 1], then there is an interpolating projection onto S with norm <D, .

Remark 1. The use of Chebyshev’s theorem makes the preceding
argument essentially univariate. The existence of nicely bounded inter-
polating projections—or, more generally, projections determined by local,
positive linear functionals—in the case of multi-dimensional spiines appears
to be open.

2. We have not prove that the points coming out of Lemma 2 are
unique. Nevertheless, Lemma 2 does give a verifiable condition that might
lead to a Remez-type algorithm for determining an equioscillating spline on
a given mesh.

3. The fact that an interpolating projection onto a spline subspace
could be bounded in terms of the (smallest) amplitudes of an oscillating
spline function has been known for some time; it was made explicit by de
Boor in [2].

4. The nature of the dependence of the points of interpolation on the
given knot sequence and degree of the spline space is not revealed by the
arguments in this paper. One natural question is whether or not one can
choose good points of interpolation by using only local knot averages.

3. SPLINE INTERPOLATION ON BI-INFINITE MESHES

We consider the problem of interpolation of bounded data y := {y;} by
functions of the form

o0

Z o Ny

i= —oC

where {N,,} are B-splines of order k on some prescribed bi-infinite mesh.
We assume condition (1) holds. In the spirit of the preceding section we
show only that it is possible to find points {¢;} such that for any given
yel,, there is a unique g=3Y o,N,, with g(z,)=y, for all i and |g| <
Dy ., |l yll. Problems of infinite interpolation have been considered by several
authors. In particular, both Micchelli’s paper [12] and de Boor’s [4] dis-
cuss their historical antecedents: the work of Schoenberg and Subbotin.

The results of Section2 insure that for each M >1, there are points
{rM:|i| < M} such that

H(Nj.k(tx{”))ﬂl ml S Do (4)

<
M



INTERPOLATING PROJECTIONS ONTO SPLINE SPACES 155

By [5], t¥e{x:Nyu(x)>D;1}. By a diagonal argument we can find
{t;—ow<i<oo} and {M,} such that

lim M=t

[— o
By continuity of matrix inversion,

lim [(N(8)) < 0 = (N (22 1y < gl = 0
= l< M
for any M. Thus, by (4) the finite sections of (N, ,(¢;)) have inverses boun-
ded by D, ... Let B,, denote the matrix
(Njul1:))

< M-
1< M

By Lemma 1 of {5],

lim B, (i) =: C(i,j)

M- <

exists for every i, j. Furthermore, the uniform (in M) exponential decay of
B, '(i, j) as |[i —j] - oo [6] ensures that }_; |C(i, j)| converges; therefore, we
can assert

2 1CE =Z lim 1B (0. )

=liArln Z |By (i )N <Dy -
J

Now, for any i, k, 3, C(i,j) N{t,)=>;limy B, '(i,j) Nft,)=lim, 3,
By;'(i,j) Ni{(t,) = 6, Similarly (N(¢,))C = I. So we have the following from
which the interpolation results stated in the first paragraph of this section
follow.

PROPOSITION.  Let {N,,} be B-splines of order k on a given bi-infinite
mesh. Then there are points {1,} such that ||[(N;4(1,)) "'l < Dy -

Finally, it is clear that the arguments used here apply in the semi-infinite
case.

Note added in proof. The points satisfying the conclusion of Lemma 2 are unique. This
follows from the main result of D. Zwick’s paper, “Strong Uniqueness of Best Spline
Approximation for a Class of Piecewise n-Convex Functions,” to appear.
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